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1. Introduction

Seasoned programmers are familiar with GNU Emacs [1], which is com-
monly thought of as an editor but is far more. The program’s small, com-
piled C-language core is extended by a sizable library of numerous utilities,
mostly scripted in Emacs Lisp, that provide context sensitive editor modes,
calculators, news and mail readers, etc. The methodology of extending ex-
isting applications in this way, or of designing them from the beginning to
be so extensible, is well known to software engineers and has been utilized in
graphics software as well as in some CAD/CAM tools and problem-solving
environments. Application-specific languages have frequently been designed
and implemented for this purpose, at some expense in terms of the program-
mer’s labor. A viable alternative is to employ a popular, general-purpose
extension language such as Python, Tcl, or GNU Guile [2].

On the other hand, applications developed by programming scientists and
engineers seldom make use of the technique, even though it is relatively easy
to master, the primary obstacle being the often-intricate interaction between
the extension and the core languages and processes or threads they describe.
Nevertheless, solid benefits can be derived from the methodology: new and
powerful functionality can be added to existing codes without having to delve
into their internal logic.

We have found this methodology especially helpful in verifying partial
differential equation (PDE) codes and algorithms. To fully test a PDE code,
one has to explore in detail its behavior for a wide range of initial and bound-
ary conditions and for various media properties and distributions within the
computational domain. Yet, existing codes may not have sufficient flexibility
in their input and output routines to allow for needed experimentation and
testing. Grafting an extension language onto the code overcomes this defi-
ciency. So enhanced, the code can be extended beyond its original mode of
operation and domain of applicability, even by the end users themselves—as
has happened with Emacs over the years.

In this context, of specific interest to us is the finite difference time do-
main (FDTD) method of computational electrodynamics, originally invented
by Yee [3] and popularized by Taflove and Hagness [4], although the program-
ming methodology discussed here applies more broadly and would benefit
related codes such as NekCEM [5].

FDTD is a second-order accurate, explicit numerical method for solving
Maxwell’s equations. It mounts electric fields on cell edges and magnetic
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fields on cell faces (or vice versa) and advances them one over the other in a
leapfrog fashion, in effect ensuring automatic satisfaction of the divergence
equations. The method is relatively straightforward to code, yet it has proven
remarkably powerful and flexible in its ability to simulate systems and phe-
nomena from nanophotonics through microwave circuit design to scattering
of light on cometary grains and interaction of cell phones with brain tissue.

What makes FDTD so effective is not so much its basic time step as the
wealth of auxiliary techniques, among them methods for signal absorption
on the boundary of the computational domain [6, 7], the division of the
domain into total and scattered field regions that allows for injection of plane
wave signals [8, 9], methods for media description with the help of auxiliary
differential equations [10, 11, 12], and methods for Fourier analysis. These
have been contributed and communally refined by its users over the decades
since the method’s conception.

As our own work called for simulations of increasing complexity [13, 14],
in terms of both the materials investigated and their distributions, as well as
more thorough code and algorithm verification, we found that conventional
methods of input specification and code control were no longer adequate.
A solution was to equip the codes in a powerful extension language that
would let us prototype additional utilities without having to gut the codes
themselves—thus protecting and building on the existing investment.

Among the utilities developed, a group of some importance comprises
structures and methods for computations on surfaces: surface maps, fluxes,
frequency and polarization filters, and far-field measurements. Together they
provide us with a framework for virtual measurements that can be carried out
while the computation is unfolding, or afterwards, on data from the applica-
tion. Most commonly such operations are performed on rectangular planes
coincident with the computational grid. Although efficient, this approach is
needlessly restrictive. Situations may arise in complex simulations such that
fluxes have to be computed through variously shaped surfaces, inserted in
strategic locations. To this effect we have developed a flexible apparatus that
lets us specify arbitrary surfaces cutting through the computational domain,
on which arbitrary operations on the computed fields can be carried out.

In this paper we discuss the architecture of our solution and illustrate
it with simple examples derived from the verification of one of our FDTD
codes.
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2. Code Extension

We have implemented the ideas outlined in the introduction by graft-
ing the GNU extension language, Guile, onto a conventional C++/Fortran
FDTD code—called Forms and built on top of the Chombo toolkit [15]—
that computes, in three dimensions, the scattering of arbitrary electromag-
netic signals incident from arbitrary directions on arbitrarily distributed me-
dia with arbitrary optical properties, all within both total and scattered field
regions, surrounded by UPML boundaries [6].

Guile mostly overlaps with Scheme, and its stand-alone version can be
used to develop and test code components interactively. When grafted onto
an application, it runs in a separate thread, which the application can com-
municate with to obtain or modify data and to defer evaluations of Scheme
forms to. Our choice of Guile as an extension language for the project—
Python [16, 17] would be an obvious alternative—was predicated on a similar
choice made by the authors of the MEEP FDTD package, which is familiar to
electrical and electronic engineers [18]. Although the resulting architecture
of our code is somewhat different, the goal was to provide a similar scripting
environment to the users.

At the program’s startup, the Guile thread loads an input file that con-
tains specifications for the simulation, including parameter values defined as
Scheme bindings and functional (lambda) expressions that define media dis-
tribution and properties, incident signals, and the virtual measurements to
be carried out.

A C++ class, SCMParmParse, patterned after ParmParse of Chombo,
was implemented to facilitate the movement of data between the Chombo
layer of the application and the Scheme’s binding table. But unlike the
latter, it implements the movement of data in both directions, as well as
providing methods for checking whether the data item in the Scheme space
is a procedure, closure, or thunk. Furthermore, it provides methods for fast
access to data, for reading and writing, without going through the Scheme
binding table, if the corresponding Scheme variable (which is not the same as
a binding) is known. The latter is important, as it speeds data transactions
significantly.

Functions that are going to be invoked frequently (for example, func-
tions that define material properties) may be coded in C or Fortran, hand-
optimized, compiled, and loaded into the Guile thread dynamically as exter-
nal subroutines.
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This architecture, while not the most efficient computationally, gives us
flexibility that suits code verification and numerical experimentation. Ma-
terial properties, distribution, signals, and measurements, can be defined as
simple Scheme functions, even pretested in the stand-alone Guile environ-
ment, then passed to the program as data written in the input file. Once
evaluated in this context and found promising, they can be recoded in C or
Fortran for semi-production runs.

For this strategy to work, we had to implement a small number of external
Scheme subroutines in the C++/Fortran core of the original program, to
provide the Guile thread with read/write access to Chombo arrays and, for
parallel execution, with utilities for elementary exchange of data between
MPI processes.

The routines that write data on Chombo arrays have drawing seman-
tics. They let program users draw boxes (aligned with the grid principal
directions), balls, and arbitrarily oriented and shaped ellipsoids, cylinders,
cones, disks, parallelepipeds, tori, and lenses (intersections of two overlapping
balls) in the program’s three-dimensional computational domain—with arbi-
trary colors. The colors are simply integer labels, which the users may then
associate with different material properties within their input. The figures
may overlap and may be drawn with color zero, which wipes out any pre-
viously drawn color. Negative colors are reserved for the program’s internal
use and mark UPML boundaries and the scattered field region. A provision
is included for internal definitions of most commonly used materials, such
as dielectrics, Drude metals, and single resonance Lorentz media within the
core, to be associated with other negative colors.

Only one routine, called interpolate, reads data from Chombo arrays
and can be used in virtual measurements. It uses volume weighting to in-
terpolate the data for Ei, Di, Hi, or Bi, i = x, y, z, at arbitrary points—not
necessarily coincident with the grid nodes—in the computational domain. It
knows about the interpolated fields’ placements (cell center, edge, or face).
A Scheme-level overloading lets the user interpolate for the full vector, E,
D, H , or B, in one call.

Routines for parallel computation return the total number of processes in
the pool and a calling process number, and then perform gather, broadcast,
and barrier operations. In the program’s core, Chombo takes care of parallel
computation transparently. Hence these procedures are for use only in the
Guile thread. When invoked, the Guile thread passes the data to the Chombo
core of an MPI process, which transmits it to other MPI processes, to be
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picked up by Guile threads associated with them.
Functions for computations on surfaces are built on top of several Guile

libraries that extend the functionality of the core code. The most basic are
libraries that define important physics and mathematics constants and three-
dimensional vector calculus—the latter based on Goops, which is the object-
oriented extension to Guile, similar to CLOS, the Common Lisp Object Sys-
tem [19]. This is then extended by utilities for signal definitions that include
various chirps and windows, as well as utilities that define media types and
provide lightweight solvers for auxiliary differential equations. Bessel func-
tions and Legendre polynomials from the GNU Scientific Library are wrapped
for dynamic loading into Guile, and a library based on them computes the
Mie scattering solution for the spherical case and for the arbitrarily polarized
incident harmonic wave propagating in the z direction [20, 21]. It is then
used to verify the code itself and test the accuracy of numerical solutions.

3. Surface Class

The virtual measurements library defines a surface as a class with slots
for the following:

1. A parameteric equation that defines the surface.

2. Initial and final values for the parameters.

3. A restriction condition to be additionally imposed on the parameters.

4. Parameter increments.

5. A list of plaquetes covering the surface.

6. Other data, to be specified dynamically by the user or utilities provided.

A plaquette is also defined as a class with the following slots:

1. The plaquette’s center, which is a three-dimensional vector.

2. The parameters of the plaquette’s center.

3. The plaquette’s surface element, which is also a three-dimensional vec-
tor, that corresponds to n d2S, where n is a unit vector perpendicular
to the plaquette, and the plaquette’s area is evaluated by using the
Brahmagupta-Bretschneider-Coolidge formula [22]

d2S =

√
(s− a)(s− b)(s− c)(s− d)− 1

4
(ac + bd− pq)(ac + bd− pq),

(1)
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where a, b, c, and d are the lengths of the four sides of d2S, s is the
semiperimeter of d2S, and p and q are the lengths of the diagonals
of d2S. Although this formula is costly, the computation needs to be
carried out once only for a given surface.

4. Other data, to be specified dynamically by the user or utilities provided.

The reason we resort to the Brahmagupta-Bretschneider-Coolidge for-
mula while computing surface elements is that using a simpler expression
such as |eu × ev|, where u and v are surface parameters, can produce a sys-
tematic error while computing fluxes. Let us consider, for example, a sphere.
Here |r sin θdθ × rdφ| underestimates the plaquette’s area in the northern
hemisphere, for finite dθ and dφ, because the meridians diverge from the
north pole. In the southern hemisphere, the same expression overestimates
the area, because the meridians converge toward the south pole. Whereas the
latter compensates the former exactly when computing the surface area, the
compensation will not work when computing a flux of, for example, a con-
stant field, E = Eez. Hence we need a more general formula that evaluates
accurately the area of an arbitrary quadrilateral.

To prepare a surface for computations, the user or a utility must create an
object of the surface class by providing the parametric equation, the initial
and final values for the parameters, parameter increments, and, sometimes,
a restriction condition—for example, a disk covered with a rectangular grid
requires one. To cover the surface with the plaquettes, the user then invokes
a method called iterator, which generates the list of plaquettes and places
it in the plaquettes slot of the surface object.

To assist the user, the library provides methods for generation of com-
monly used surfaces, such as hemispheres, spheres, planes, disks, and spheri-
cal caps, the last parametrized by a projection onto the plane tangent to the
cap’s apex from the opposite point of the sphere. Spherical caps can be used
to cover the polar regions of the sphere, so as to avoid singularities of the
spherical coordinate system.

On this foundation we build utilities for construction of field maps on
surfaces, computation of fluxes through surfaces, Fourier analysis of fields on
surfaces, and far-field measurements.

4. Field Maps

Field maps are a commonly employed utility for field visualization. When
combined with maps produced using analytical solutions, they provide a
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simple tool for code verification. An example is presented in Figure 1.
Here we simulated, on a 1903 grid,1 scattering in vacuum of a monochro-

matic x-polarized wave of amplitude 1 and length λ = 60, moving in the
z-direction, on a glass ball (εSiO2 = 3.8) of radius rglass = 27. The units of
length are arbitrary because of the conformal invariance of Maxwell electro-
dynamics: in all computations we hide ε0 and µ0 into the fields themselves
and assume c = 1. Of course, proportions such as rglass/λ are not arbitrary,
and, together with εSiO2 (which is dimensionless), correspond to a class of
specific physical systems.

In the figure, the two panels on the left show numerically computed values
of Ex at some instant t = t0, in two planes, x = xc at the top and y =
yc at the bottom, where rc = [xc, yc, zc] is the ball’s center. The abscissa
corresponds to the z direction. The two panels on the right show analytically
computed values of Ex, using the Mie solution, in the same two planes and
at the same instant. The color and contour scales are the same in all four
panels. The comparison shows the numerical solution to be good, although
minor differences exist: there is too much backscattering in the numerical
solution, for example, which is caused by the staircasing of the ball’s surface:
it becomes a disk rather than a cap in the vicinity of the pole facing the
incident wave.

Using the library utilities provided, one can define more surfaces and
compute field maps on them, in order to explore as much of the whole three-
dimensional domain as is reasonable and in sufficient detail.

Figure 2 in Section 6 shows a map of np · P̄ (ω, rp), where P̄ (ω, rp) is
defined by equation (6), on a sphere of radius 75 co-centric with the glass
ball, for the same simulation.

The computation of the map proceeds by running down the list of pla-
quettes, and invoking interpolate at rp, for each plaquette, for a field of
interest. The interpolated field can be then written to a file or saved in the
plaquette’s other−data slot for further processing, if required.

5. Simple Fluxes

With the surface object instantiated and initialized, flux computations
can be carried out easily because most of the work is already done by the

1The grid included UPML boundaries and scattered and total field regions. The total
field region itself was covered by a smaller 843 grid.
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Figure 1: Comparison between numerically and analytically generated fields—total within
the total field box and scattered outside—for scattering of an incident x-polarized harmonic
signal on a glass ball. Ex values have been collected on two perpendicular slices that cut
through the center of the ball, x = xc at the top and y = yc at the bottom. The two
panels on the left show a numerically generated solution; the two panels on the right show
an analytically generated solution for the same instant.
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iterator. For example, to evaluate the surface area, A, one would run down
the list of plaquettes accumulating their norms: A =

∫
S
|n d2S|. This pro-

vides us with a useful check for whether the surface is correctly defined and
whether the plaquette covering is sufficiently fine.

Since one can think of the surface area as a flux of n through S, this
procedure is at the same time a prototype for more general flux computations:
in this case the field in question, say, E or H , may be extracted from the
Chombo data with interpolate for the plaquette’s centre, before evaluating
its scalar product with the plaquette’s surface element and the accumulation
step. The actual flux computation method is overloaded so that it computes
a normal flux for a single vector field and a cross-product flux, for example,∫

S
(E ×H) · n d2S, if two vector fields are specified in the arguments list.

6. Fourier Analysis

The first step in the Fourier analysis is to specify frequencies for which
Fourier accumulations should be carried out. A list of frequencies may be
specified manually or by calling a simple function that generates the required
frequencies automatically, the latter useful if full spectral analysis is planned.

A predefined surface object must be then prepared for Fourier operations.
It is first covered with plaquettes, if this hasn’t been done yet. Next, a list
is assembled, the first element of which is the field label, and the second
element of which is a list of null three-dimensional vectors of length equal to
the number of frequencies. The list is then placed in the other−data slot of
each plaquette.

If the surface is to be prepared for Fourier operations on more than one
vector field, the first element of the list is a list of field labels, and the second
element is a list of lists of null vectors. The lists attached to each plaquette
will be then used to accumulate the Fourier transforms.

For example, let a given plaquette’s central point be rp, let the frequencies

list be (ω1, ω2, . . . , ωnf
), and let us suppose we intend to compute Ê (ωi, rp)

and Ĥ (ωi, rp) for each plaquette, p = 1, 2, . . . , np. Then the list of lists in
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the other−data slot of plaquette p will be
(

(“E” , “H”),

((
Ê(ω1, rp) , Ĥ(ω1, rp)

)
,

(
Ê(ω2, rp) , Ĥ(ω2, rp)

)
,

. . . ,
(
Ê(ωnf

, rp) , Ĥ(ωnf
, rp)

)))
(2)

when the computation completes.
Because the list of frequencies is common to all plaquettes, it is placed in

the other−data slot of the surface itself, not of the plaquettes.
With the surface so prepared, the Fourier accumulation,

∫ t2
t1
F(t, rp) eiωkt dt,

for the frequencies and fields specified, for example, F = E, H , can com-
mence. A simple method is invoked at every time-step. The only parameter
the method uses is the surface object. All other information, including the
fields, the frequencies, and the plaquettes, is read from the object, whereas t
and dt are read from simulation constants, which are global to the Chombo
program and shared with Guile. The coding in this case is further facili-
tated by Guile’s automatic recognition of complex numbers and transparent
overloads of arithmetic operations on them.

A commonly used approach employs both Ê(ω, rp) and Ĥ(ω, rp) to eval-
uate the period average of the monochromatic power vector at ω [21].

Assuming E(t) = Ec cos ωt + Es sin ωt, and introducing a phasor field
Ẽ = Ec + iEs, and similarly for H(t), one can show that

1

T

∫ t0+T

t0

E(t)×H(t) dt =
1

2
<
(
Ẽ × H̃∗

)
, (3)

where T = 2π/ω. If we Fourier-accumulate E(t) over two full periods,

Ê =

∫ t0+2T

t0

E(t) eiωt dt = T Ẽ, (4)

and do similarly for Ĥ , then the final formula is

P (ω, rp) =
1

2T 2
<
(
Ê(ω, rp)× Ĥ∗(ω, rp)

)
. (5)
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Two auxiliary methods are provided to make this task easier. One computes
the full flux of P (ω, rp) through the surface, assuming that the required
Fourier transforms have been accumulated (this is checked by the method on
invocation). The other dumps the map of np ·P (ω, rp) on a file, in a format
suitable for display with Gnuplot. The latter can be then compared with
a similarly generated power map that uses analytical solutions for phasors
Ẽ(ω, rp) and H̃(ω, rp), in order to assess the accuracy of the numerical
solution.

Figure 2 shows just such a comparison. The computation is as described
in Section 4; see Figure 1. Here, virtual measurements were carried out
on a fictitious measurement sphere of radius rmeasure = 75, which was fully
enclosed within the scattered field region. We carried out two types of mea-
surements. First, we measured E(t, rp) and H(t, rp) for t ∈ [t0, t0+T ], where
T was the wave’s period, and evaluated

P̄ (rp) =
1

T

∫ t0+T

t0

np · (E(t, rp)×H(t, rp)) dt (6)

for each plaquette p = 1, . . . , np. Next, we accumulated Ê(ω, r0) and Ĥ(ω, r0),
as per equation (4), and evaluated np · P (ω, rp) using equation (5), also for
each plaquette p. The resulting two maps were identical to between five and
eight significant digits, thus testing the accuracy of our Fourier operations.
The map for P̄ (rp) is shown in the top panel of Figure 2.

To verify the FDTD code itself for this computation, we used the virtual
measurements library methods (which can be invoked in a stand-alone Guile
session, as well as from within the Guile extended FDTD code), but we filled
the Ê(ω, rp) and Ĥ(ω, rp) slots on the measurement sphere’s plaquettes with
analytically derived field values obtained from the Mie solution (see Sections 4
and 2) The corresponding map is shown in the bottom panel of Figure 2.

The resulting comparison is highly sensitive to any breaks in the symme-
try, caused, for example, by interactions with the UPML boundaries, since
it piles up errors over Fourier and/or power accumulation time. As a matter
of fact, it can be used to adjust the UPML parameters, so as to minimize
the global error, which is a methodology we adopted in our simulations. In
effect we obtained agreement between the numerical computation and the
Mie solution to within a relative error of less than 1%, which is within the
expected accuracy of the FDTD method for this configuration and resolu-
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Figure 2: np · P (ω, rp) on a sphere of radius 75 co-centric with a scattering glass sphere
of radius 27, for x-polarized incident monochromatic wave of length 60, moving up in the
z-direction in vacuum. Top figure: FDTD computation with Forms; bottom figure: ana-
lytical computation based on the Mie solution. The abscissa corresponds to the azimuth
angle, φ, from −180◦ to +180◦. The ordinate corresponds to the inclination angle, θ, from
0◦ at the top, to +180◦ at the bottom.
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tion.2 The somewhat stronger backscattering, due to the staircasing of the
ball’s surface, mentioned in Section 4, can be seen clearly in the upper panel:
an extra contour line is visible at the bottom of the panel.

7. The Near-to-Far-Field Transformation

The near-to-far-field transformation is an essential tool that lets us carry
out virtual measurements on systems that combine physics at various dis-
tance scales. Light scattering on cometary dust is a typical example and
is in many ways similar to scattering on nanoparticles. This process can
be simulated in the vicinity of the scattering particles, but observations are
normally made from a very large distance, compared with the size of the
particles, which cannot be captured explicitly in a numerical simulation.

Computational methodology developed by Love and MacDonald in the
early 1900s provides us with means to compute the far field if a solution is
known on a closed surface S0 that surrounds the scattering particles [23, 24,
25]. We found a more recent discussion in [4] and especially in [26] helpful.

In short, assuming that Ê(ω, r0) and Ĥ(ω, r0) are known for all r0 ∈ S0

we first compute the zero-potentials:

Â0 (S0, ω, er) =
1

4π

∫

S0

n0 × Ĥ(ω, r0) eikr0·er d2S, and (7)

F̂0 (S0, ω, er) = − 1

4π

∫

S0

n0 × Ê(ω, r0) eikr0·er d2S, (8)

where er is a unit vector pointing from the center of the coördinate system,
assumed to be enclosed by S0, toward the (far) observation point, k = 2π/λ
is the wave number, and n0 d2S is the S0 plaquette vector. These are then
transformed into two electromagnetic vector potentials at the observation

2The FDTD algorithm introduces a slight asymmetry into the computation because
of how it samples the fields on cell faces and edges. The main sources of computational
error in this case are, apart from the relatively coarse gridding, the grid staircase that
covers the surface of the scattering glass ball, imperfect signal injection and subtraction
on the total/scattered field boundary, and imperfect absorption of the incident signal by
the UPML boundary.
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point r = rer:

Â(ω, r) =
e−ikr

r
Â0 (S0, ω, er) , (9)

F̂ (ω, r) =
e−ikr

r
F̂0 (S0, ω, er) . (10)

It is advantageous to compute Â0 and F̂0 separately, since these can be
reused for the whole ray in the er direction, but they vary with the direction
itself.

The final step computes the electromagnetic fields transforms at the ob-
servation point itself, namely,

Ê (ω, r) = −ikF̂ × er − iω
(
Â−

(
Â · er

)
er

)
, (11)

Ĥ (ω, r) = ikÂ× er − iω
(
F̂ −

(
F̂ · er

)
er

)
. (12)

The formulae already truncate terms that vanish like 1/r2 and faster.
To facilitate these and other operations on far fields, we introduced a

far−field class with slots for the following:

1. Frequency, ω.

2. Direction, er.

3. Distance, r.

4. Magnetic field potential, Â.

5. Electric field potential, F̂ .

6. Electric field, Ê.

7. Magnetic field, Ĥ .

We also added simple methods for the addition of far−field objects, and
for their copy, because we need to add far-field potentials for surfaces that
are covered by multiple patches, as is the case for a sphere, before we can
evaluate the fields.

With a closed surface object with plaquettes filled with Ê(ωi, rp) and

Ĥ(ωi, rp) vectors, where p = 1, . . . , np, and for a list of frequencies, ωi, i =

1, . . . , nf , as shown by (2), we can now call a method that computes Â0 and

F̂0 for a given direction er and for each frequency in the list, and returns a list
of far−field objects, with the Ê and Ĥ slots still uninitialized and ordered
the same way as the list of frequencies. Next, this list can be converted to
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Table 1: Far-field transformation versus exact evaluation for r = 2000.

ω n Mode Ê/10−4 Ĥ/10−4

0.42 [1, 1, 0] far-field [−3.74, 3.74,−0.57]+i [9.21,−9.21,−11.24] [−0.40, 0.40, 5.28]+i [−7.95, 7.59,−13.03]
Mie [−3.86, 3.80,−0.39]+i [9.12,−9.26,−11.20] [−0.25, 0.30, 5.42]+i [−7.93, 7.92,−12.99]

0.84 far-field [−4.02, 4.02, 15.79]+i [−6.74, 6.74,−1.29] [11.16,−11.16, 5.69]+i [−0.91, 0.91, 9.52]
Mie [−3.90, 4.04, 15.62]+i [−6.96, 6.95,−1.13] [11.07,−11.01, 5.62]+i [−0.77, 0.83, 9.84]

0.42 [0, 1, 1] far-field [27.21, 0, 0]+i [−49.38, 0, 0] [0, 19.24,−19.24]+i [0,−34.91, 34.91]
Mie [27.77, 0, 0]+i [−49.31, 0, 0] [0, 19.64,−19.62]+i [0,−34.93, 34.81]

0.84 far-field [−53.73, 0, 0]+i [−36.74, 0, 0] [0,−37.99, 37.99]+i [0,−25.98, 25.98]
Mie [−53.01, 0, 0]+i [−37.38, 0, 0] [0,−37.49, 37.48]+i [0,−26.43, 26.47]

0.42 [1, 0, 1] far-field [10.76, 0,−10.76]+i [−4.48, 0, 4.48] [0, 15.21, 0]+i [0,−6.34, 0]
Mie [10.78, 0,−10.71]+i [−4.64, 0, 4.67] [0, 15.19, 0]+i [0,−6.58, 0]

0.84 far-field [−16.79, 0, 16.79]+i [−13.81, 0, 13.81] [0,−23.74, 0]+i [0,−19.52, 0]
Mie [−16.81, 0, 16.95]+i [−14.22, 0, 14.24] [0,−23.87, 0]+i [0,−20.13, 0]

0.42 [−1, 1, 0] far-field [−3.74,−3.74, 0.57]+i [9.21, 9.21, 11.24] [0.40, 0.40, 5.28]+i [7.95, 7.95,−13.03]
Mie [−3.86,−3.80, 0.39]+i [9.12, 9.26, 11.20] [0.25, 0.30, 5.42]+i [7.93, 7.92,−12.99]

0.84 far-field [−4.02,−4.02,−15.79]+i [−6.74,−6.74, 1.29] [−11.16,−11.16, 5.69]+i [0.91, 0.91, 9.52]
Mie [−3.90,−4.04,−15.62]+i [−6.96,−6.95, 1.13] [−11.07,−11.01, 5.62]+i [0.77, 0.83, 9.84]

0.42 [0,−1, 1] far-field [27.21, 0, 0]+i [−49.38, 0, 0] [0, 19.24, 19.24]+i [0,−34.91,−34.91]
Mie [27.77, 0, 0]+i [−49.31, 0, 0] [0, 19.65, 19.62]+i [0,−34.93,−34.81]

0.84 far-field [−53.73, 0, 0]+i [−36.75, 0, 0] [0,−37.99,−37.99]+i [0,−25.98,−25.98]
Mie [−53.01, 0, 0]+i [−37.39, 0, 0] [0,−37.49,−37.48]+i [0,−26.43,−26.45]

0.42 [1, 0,−1] far-field [−2.23, 0,−2.23]+i [21.68, 0, 21.68] [0, 3.15, 0]+i [0, 30.67, 0]
Mie [−2.54, 0,−2.54]+i [21.49, 0, 21.44] [0, 3.59, 0]+i [0, 30.35, 0]

0.84 far-field [12.11, 0, 12.11]+i [14.82, 0, 14.82] [0,−17.12, 0]+i [0,−20.97, 0]
Mie [11.94, 0, 11.88]+i [15.36, 0, 15.35] [0,−16.84, 0]+i [0,−21.72, 0]

a list of far−field objects, where Â0 → Â and F̂0 → F̂ for a given distance
r, by a simple map.3 Then another map is invoked that converts the result
to a list of fully computed far−field objects with Ê(ωi, r) and Ĥ(ωi, r), for
each i = 1, . . . , nf . For convenience this chain of operations is wrapped into a
single method by overloading, that invokes the necessary steps transparently.

To test the computational apparatus, we invoked the Mie solution for
the scattering of two incident waves of λ1 = 15 and λ2 = 5 on a glass ball
(εSiO2 = 3.8) of radius rglass = 10, and evaluated analytically scattered fields
on plaquettes of a sphere of radius rsphere = 12, co-centric with the glass
ball, which was covered by three patches—the north cap, the south cap,
and the normal spherical patch in between—so as to avoid the coördinate
system singularities at the poles. Then we evaluated far-fields, Ê(ωi, r) and
Ĥ(ωi, r), for the two frequencies in the list and for r = 2000, and for the

3A map in Scheme is a function that maps one list onto another.
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following six directions:

e1 = (1, 1, 0)

e2 = (0, 1, 1)

e3 = (1, 0, 1)

e4 = (−1, 1, 0)

e5 = (0,−1, 0)

e6 = (1, 0,−1)

Finally, we evaluated the exact fields, using the Mie solution, for rk =
rek, k = 1, . . . , 6. The results are shown in Table 1.

The ratios of 2rsphere/r = 0.012 and λ1/r = 0.0075 are not so small here
that no difference would be visible between the Mie solution and the far-field
approximation. Nevertheless, we find good agreement (with about 1% error)
where the field values are relatively high, and the right order of magnitude
and field directions everywhere.

8. Conclusions

High-resolution scientific and engineering simulations in three dimensions
produce copious amounts of data, which normally still must be postprocessed
to deliver information useful to scientists and engineers. A conventional
strategy from the days when supercomputer CPUs were slow and expensive
was to dump the simulated data as “bricks-of-bytes” or “bricks-of-floats”
and postprocess it on cheaper hardware, for example, workstations using
visualization and other tools.

As resolution improved and CPUs got cheaper, however, the equation
changed in favor of computation and against moving between computational
systems involved and storing huge amounts of data often for long time. A
strategy that arose was to coprocess the data on the fly. But this calls for
embedding data processing routines in the code itself, which increases its
complexity, while not contributing to its flexibility.

The use of code extensions, in combination with powerful scripting lan-
guages such as Python and Guile, provides a third way. Here the data-
processing routines are external yet can be invoked from within the core
supercomputer code to carry out whatever auxiliary computations are re-
quired. They can be developed externally, tested within their own interac-
tive environments, and assembled into libraries of utilities, to be invoked not
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only from within the core code, but also from within post- and preprocessing
codes, were these still to be used. Where computational efficiency is needed,
which is not always the case, the extensions can be prototyped and tested
in a scripting language, then recoded in a low-level language, C or Fortran,
for better performance, to be called from within the extension shell, or even
embedded directly into the core code.

A special group of co- or postprocessing utilities concerns virtual mea-
surements, and here we find that data is frequently sampled and otherwise
processed on surfaces. The methodology described in this paper illustrates
how a surface can be instrumented as an object to allow for its flexible func-
tional definition and then for its use in complex operations on computed data.
As the data itself is stored within the surface, on its plaquettes, all necessary
information for surface computations is provided in one item, which is easy
to pass through pipes of operations.

Application examples, focused on the verification of an FDTD code,
showed this methodology at work. Here we used the same Guile tools to
collect, assemble and display data produced by the code and the correspond-
ing data obtained from an analytical solution (Mie’s in this case), looking
at field and power maps on various surfaces, and proceeding eventually to
far-field virtual observations: all steps greatly facilitated by the framework
developed, and without ever having to touch the core code, other than to
provide the basic hooks for the extension environment.
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